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information contained in orthographic velocity fields. The two are related because,

Qunder local analysis, limitations on the interpretation of orthographic velocity fields
also apply to perspective projection. The following results are established:

* When the interpretation is applied locally, the 3-D interpretation of the
perspective velocity field is unstable.

0 The orthographic velocity field determines the structure of the inducing object
exactly up to a depth-scaling.

• For planar objects, the orthographic velocity field always admits two distinct
solutions up to depth-scaling.

* The 3-D structure is determined uniquely by a "view and a half" of the
orthographic velocity field.
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I Introduction

When objects move in the environment, the images they cast upon our retinas
undergo complex transformations. The human visual system can interpret these
transformations to recover the three-dimensional (3-D) structure of the viewed
objects and their motion in space.

This capacity to interpret structure from motion has been demonstrated in a number
of studies" 2 . Its earliest systematic investigation was carried out by Wallach and
OConnell 3 in the study of what they have termed "the kinetic depth effect". In
their experiments, an unfamiliar object was rotated behind a translucent screen,
and the shadow cast on the screen by a distant light source was observed from the
other side of the screne. In most cases, the viewers were able to describe correctly
the hidden object and its motion, even when each static shadow projcction of the
object was unrecognizable, and contained no three-dimensional information.

The original kinetic depth experiments employed primarily wireframe objects which
projected as sets of connected lines. Later studies4'5 '2 established that 3-D structure
can be perceived from displays consisting of unconnected elements in motion, and
under both continuous and apparent motion conditions.

Additional demonstrations of motion-based interpretation were provided by the
remarkable experiments of Johansson 6'7 . These demonstrations were created by
filming human actors moving in the dark with small light sources attached to their
main joints. Each actor was thus represented by up to 13 moving light dots. The
resulting dynamic dot patterns created a vivid, three-dimensional impression of the
actors and their motion.

In this memo, I shall review the main results obtained to date in the computational
study of the interpretation of structure from motion. These studies examine the
problem from a theoretical standpoint in an attempt to attain two main goals. The
first is what may be called the underlying computational theory of the task8 '9 . This
theory tries to explain how the interpretation can be achieved in principle by any
biological visual system or by a man-made device. The second computational goal
is to develop and compare different schemes that can actually recover 3-D structure
from motion. The study of these schemes, their relative merits and shortcomings,
and the comparison of their performance with that of humans, can lead to a better
understanding of the interpretation scheme embodied in the human visual system.

In the next section, I shall analyze the computational problem, and describe a scheme
for recovering structure from motion. Only a brief outline will be given, since a
detailed description can be found elsewhere.10 Section 3 will review recent alternative
schemes and additional computational results obtained to date. Finally, Section
4 will make some comparisons among the main different schemes. In particular,
the recovery of structure from continuous velocity fields under orthographic and
perspective projections will be examined.
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Figure 1 The interpretation of structure from motion. The dots comprising the two cylinders

are projected on the screen (the outline of the cylinders in not shown in the actual presentation).

The 3-D structure of the cylinders can be recovered from the motion of the dots across the screen

(see Ullmnan, 1979).

2 The rigidity-based interpretation of structure from motion

In this section, we shall assume that the motion is given as a sequence of discrete
frames, each one depicting a collection of unconnected elements. Figure 1 shows
an example in which the elements are lying on the surface of two coaxial, invisible
cylinders. The 3-D coordinates of all the dots are stored in a computer's memory,
and their projection on the frontal plane is computed and presented on a CRT
screen. The imaginary cylinders are then rotated (up to about 10 degrees between
frames), and their new projection is computed and displayed on the screen. Each
single static view of the cylinders appears as a random collection of dots. However,
when the changing projection is viewed in a movie-like fashion, the elements in
motion across the screen are perceived as two cylinders whose shapes and angles of
rotation are easily determined.

How can this interpretation be achieved? The fundamental underlying problem is
the ambiguity of the interpretation: there are many different motion patterns in
space that could produce the same two-dimensional motion of the elements on the
screen. To resolve this ambiguity, the interpretation scheme must incorporate some
additional constraints that would rule out most of the possible interpretations and
force a unique solution, which in most cases is also the correct one.

A possible constraint, suggested originally by Wallach and O'Connell 3 is a rigidity
constraint. That is, the preferred interpretation is the one in which the elements
move together as a rigid object rather than a collection of elements moving
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independently in space. The suggested rigidity constraint raises, however, a number
of problems. The first is the question of uniqueness: if the same 2D transformation

* - of the elements can be produced by different 3-D objects, participating in different
3-D movements, then rigidity must be rendered an insufficient constraint for the
3-D interpretation task. A second problem is the possibility of false targets: if
the elements participate in fact in a non-rigid motion in space, and if their 2D
projoction happens to have a rigid interpretation, then this false rigid solution will
be forced upon the elements. Finally, there is the multiple object problem: if the
observed elements belong not to a single rigid object, but to distinct objects moving
independently, then the collection as a whole will fail to have a rigid interpretation.
A rigidity-based interpretation must, therefore, be applied somehow to relevant
subcollections of the elements, and not to the entire scene at once.

A detailed analysis of these problems can be found elsewhere2 , together with a
discussion of possible implications to human motion perception. Here, I shall only
sketch briefly the main computational results. It has been shown by Ullinan and
Fremlin (in the "structure from motion" theorem 2), that, given three distinct views
of a moving object, it can be determined unambiguously whether they represent
a single rigid object, and if they do, then the 3-D structure can be recovered
uniquely. The object is defined here as a collection of identifiable points, and to
obtain uniqueness, the object must contain at least four non-coplanar points.

*Rigid objects in motion are thus determined uniquely on the basis of information
that is local in both space and time. This result provides answers to the problems
raised above. Uniqueness of the solution is guaranteed, provided that the moving
object contains at least four non-coplanar points. The possibility of false targets
is eliminated: it can be shown that the probability of four points that, in fact,
do not belong to a single rigid object will happen to have a rigid interpretation
is negligible. Finally, the locality of the interpretation suggests a solution to the
multiple object problem. If the interpretation is restricted to local groups of about
four elements each, then, due to the contiguity of objects, many of these groups will
lie within a single object, and therefore their interpretation will not be affected by
the additional objects. Given a scene containing several rigid objects in motion, a
correct interpretation can therefore be obtained using the following scheme: divide
the image into local groups of about four elements each, test each group for a unique
rigid interpretation, and combine the results obtained for the different groups.

3 Alternative schemes and additional results

The analysis outlined in the previous section has been formulated in terms of
* distinct views, distinct identifiable points, and a parallel projection of the moving

objects. In this section, I shall examine similar results obtained under somewhat
different formulations.
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3.1 Perspective vs. parallel projection

The structure-from-motion theorem mentioned above assumed parallel or or-
thographic projection. Unlike perspective projection, orthographic projection is
formed by parallel light rays that are perpendicular to the image plane. Under such
,projection, the interpretation is unique up to a possible reflection about the image
plane. This is an inherent ambiguity, since the projections of a rotating object, and
its mirror image rotating about the same axis in the opposite direction, coincide
under parallel projection. It is not surprising, therefore, that under orthographic
projection, and in the lack of any additional source of 3-D information, human
observers experience spontaneous depth-reversals of the objects, accompanied by
reversal in the observed direction of rotation.

The natural projection of 3-D objects onto the retina is a perspective rather
than parallel projection (i.e., the projection rays are not parallel, but meet
at a common point). Although it has been demonstrated (e.g., in the original
kinetic depth experiments) that structure can be perceptually recovered from the
parallel projection of moving objects, it is of interest to analyze the rigidity-based
interpretation under perspective projection. Experiments with computer algorithms
(some of which are described elsewhere 2) have suggested that seven or eight points
in two perspective views are sufficient for a unique interpretation. Six points were
sometimes sufficient for a unique interpretation, but not always. Longuet-Higgins11

has proposed an elegant algorithm for recovering 3-D structure from two perspective
views of eight points. The computation required is particularly simple, involving
primarily the solution of eight linear equations. This analysis did not provide, V_

however, a uniqueness proof.

Recently, Tsai and Huang' 2 provided a comprehensive analysis of the uniqueness
problem under two perspective views. Their results established that seven points
guarantee a unique interpretation, provided that (i) they do not lie on a pair of
planes, one of which passes through the origin, and (ii) they do not lie on a single
cone containing the origin. This means that, except for a few cases where the points
happen to form some special configurations in space, the interpretation will be
unique. Tsai and Huang provided, in addition, simple algorithms for the recovery
of the motion and structure parameters.

3.2 On the meaning of "Computational Experiments"

Those who associate "experiments" primarily with the testing of human subjects
may wonder what is meant here by experiments with computer algorithms. The
answer lies in the fact that it is often easier to find a solution to a problem (at
least an approximate one) than to prove its existence and uniqueness. Suppose, for
example, that it is conjectured that the three-dimensional structure of an object
can be recovered from its changing projection by solving a certain system of linear
equations. The coefficients in these equations will be variables that assume different
values for different objects in motion. It may be difficult to show that the system
has, in general, one solution. It is a straightforward procedure, however, to solve
the equations for particular examples and verify the solution and its uniqueness.

4



If we test the solution for a variety of examples, and consistently recover the
correct solution, we have some reason to believe that the interpretation scheme is,
in general, correct. It is still possible, however, that under certain conditions, the
interpretation scheme will fail. Such conditions may be difficult to discover, and
this is one reason why a comprehensive analytic analysis is more satisfaactory than
computational experiments.

3.3 The use of velocity information

So far, the changing projection of the moving objects has been described in terms of
discrete movie-like frames. It should be noted, however, that the formulation of the
structure-from-motion theorem in terms of discrete views does not imply that the
input image must be discrete rather than continuous. If a continuous motion extends
long enough to contain three distinct views (and the qualification for "distinct"
will depend on the accuracy of the imaging system), then it contains sufficient
information for a unique interpretation. The theorem states this fact without
excluding the possibility of implementing the computation using a continuous
scheme.

A distinctive property of the scheme outlined in Section 2 is that the information
used was expressed entirely in terms of the positions of the elements at different
times. An alternative formulation 13,14 uses the velocities of the points as well as
their positions.

The input to the computation consists then of a single perspective view in which the
positions of the moving elements and their velocities are specified. This velocity-
based formulation can be viewed as the limiting case of two frames, as the time
interval between them approaches zero. The uniqueness problem then takes the
following form: given the position and velocity of N points in the image, determine
whether or not they belong to a single moving object, and find the 3-D structure
of the object and its motion in space.

A preliminary theoretical problem is to determine the number N for which this
recovery problem has a unique solution. Mathematically, this problem is still
unresolved. A counting argument of equations and unknowns shows that at least
five points would be necessary. A computer algorithm implemented by Prazdny 14

suggests that five points might also be sufficient. Since the computer algorithm
proved sensitive to errors in the input, especially when the viewed object was small,
it seems that a robust recovery algorithm would require more than five points. This
problem of robustness is examined again in more detail in Section 4.3.

3.4 The use of a continuous velocity field

The scheme outline earlier relied on a small number of discrete elements. An
alternative mathematical approach is to assume that tile velocity of points in the
image is known everywhere within a given region. The information is sometimes
assumed to be known only locally; for example, the velocity field and its spatial
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derivatives are known at a single point. This formulation can be thought of as a
limiting case of the discrete formulation, as the distance between points approaches
zero.

The most complete analysis to date of this problem has been provided by Longuet-

Higgins and Prazdny15 . Their analysis has established that the velocity field at a

point has at most three different interpretations. More precisely, it showed that
for nonplanar surfaces, given the velocity field and its first and second spatial
derivatives at a point, there are at most three solutions to the surface orientation

at that point. The analysis also provided a scheme for computing the solutions.
The possible improvement of this result-in particular, a determination of whether
the solution is in fact unique-poses an open question for future research.

In an analysis of the orthographic continuous field, Hoffman16 has shown that 3-D
structure can be recovered uniquely (up to the unavoidable reflection about the
image plane) if both the velocity and the acceleration fields are known within a
region.

3.5 Restricted motion and the interpretation of biological motion

The discussion so far has examined the general case of unrestricted motion.
Additional results have been obtained for situations where certain limitations are

imposed upon the motion of the viewed objects. In this section, I shall review the
main results, together with their implication to problems in visual perception.

Results of considerable interest were obtained recently' 7 , which have shown that
for a rigid rod moving in a plane, its length and orientation in space are determined
uniquely by three views (under parallel projection). A similar result was obtained for
two rigid rods hinged together end-to-tail. When such a pairwise-rigid configuration
moves in a plane, its 3-D structure and motion are uniquely determined by only
two parallel projections.

These results offer a powerful tool for the interpretation of biological motion
(the kind of interpretation demonstrated by Johansson's experiments). Using 3-D
measurements of motion in space, Hoffman has established that the arm and leg
motion during locomotion often conforms to the planar motion constraint. Hoffman
and Flinchbaugh' 7 found that when the planarity-based scheme is applied to data
obtained from Johannson-like experiments, a correct interpretation of the 3-D
structure and motion of the moving light dots is often obtained. Their results
suggest that the human visual system may incorporate processes that are capable

of detecting pairs or triplets pf feature points engaged in planar motion, and
apply to them the planarity-based interpretation scheme. Figure 2 illustrates the
appliaation of the planarity-based interpretation scheme to six dots representing
the human body in motion. The unconnected dots are shown in 2a and the rigid
connection in 2b. These connections and their 3-D structure can be established by
the planarit. -based scheme for all the rigid links that obey the planarity constraint.

*' A similar scheme that can cope with somewhat less restricted motion was developed
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shoulder

elbow

wrist " /hip
/

knee

",ankle

Figure 2 The interpretation of biological motion. (a) Six unconnected dots representing parts

of the human body in motion. The motion of these dots can give rise to a vivid perception of a

moving person. (b) Links made along the rigid connections. These iinks and their 3-D structure

can be recovered by the planarity-based interpretation scheme (from Hoffman & Flinchbaugh,

1982).

by Webb and Aggarwal.' 8 They have considered the interpretation problem for
an object assumed to rotate continuously about a fixed axis. (In general, the axis
of rotation may change with time.) They have applied this scheme successfully
to instances of biological motion, but no mathematical results regarding the
information required for a unique interpretation have yet been obtained.

3.6 Vertical rotation and horizontal translation:
The computation of depth from stereoscopic disparity

A recent result by Longuet-Higginsl 9 established uniqueness for the case of an object
that rotates about the vertical axis and translate in the horizontal plane. When
the motion is restricted in this manner, three points are, in general, sufficient for a
unique interpretation. The significance of this result lies in its possible applicability
to the computation of depth from stereoscopic disparity. In the stereoscopic case, the
object is in fact, fixed, and the different views are obtained by the different viewing
positions of the two eyes. This problem is formally equivalent to the interpretation
of structure from motion, given only two views. The computation of depth from
stereoscopic disparities requires, in principle, knowledge of the direction of gaze of
the two eyes. Longuet-Higgins' result suggests that this information can be obtained
without reliance on non-visual information. Assuming that the horizontal meridians
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of the two eyes coincide accurately, three points (non-meridional, and riot all lying
in the vertical plane) are sufficient for the recovery of the two directions of gaze.

The main results regarding the unique interpretation of structure-from-motion
discussed so far are summarized in Table 1 for general (upper half) and restricted
(lower half) motion.

TABLE 1

MAIN RESULTS OF STUDIES ON THE RECOVERY OF STRUCTURE FROM MOTION

Unrestricted Motion

Discrete Points & Views Discrete Points, velocities Velocity Field & Its Der! -es

4 Points in 3 orthographic views 5 Points ond their velocities UP to 3 solutions for gej
UIlman & Fremlin, 1979) in o single perspective view motion (Lonauet-Higgins

(Prazdny, 1980) Prozdny, 1980)

7 Points in 2 PersPective views Unloue solution from velocity

(Tsoi & Huang, 1981) and acceleration under ortho-
grannic Projection (Hoffmon,

1980)

Application: The recovery of 3-D structure from unrestricted motion,

Restricted Motion

3 orthooroohic views of two Points in planar motion
2 orthograPhic views of 3 points In a "hinged" conflguratlon, Planar motion (Hoffman & Flinchbounh,

1982)

Application: Biologlcal motion

3 non-moridlonal points, vertical axis and horizontal translation (Longuet-Higgins, 1983)

Application: The recovery of depth from stereo disparities

"Table 1: Uniqueness of the interpretation of structure from motion. The main
results obtained to date are summarized for general motion (upper half) and
restricted motion (lower half).

4 Remarks concerning the different schemes and
their relevance to perception

The previous section examined the interpretation problem in a number of different
formulations. Since a primary goal of these studies is to provide a computational
basis for the study of perceptual phenomena, it is worthwhile to compare the
relevance of the different schemes to human perception. Three questions will be
CVxamiizied briefly in this section. The first has to do with the applicability of
mathematical results and algorithms to biological visual systerns; the second has
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to do with the use of positions versus velocity fields; the third with parallel and
perspective projections. On the first two of these questions, I shall liiiiL myself to

a brief discussion of a few selected points.

4.1 Mathematical algorithms and biological visual systems

The results outlined in the preceding two sections were formulated in terms of

mathematical propositions and algorithms. Two difficulties are sometimes raised
regarding the applicability of such results to biological visual systems. 'he first
is that, unlike an electronic computer, a biological system cannot be expected to
solve the equations used in deriving the mathematical results. The second is that
a biological system does not have access to the perfectly accurate data used in the
mathematical abstraction.

A comprehensive examination of the first objection would be beyond the immediate
goals of this review. The main answer lies, however, in the distinction between
different levels of analysis: competence versus performance 20 or computational vs.

algorithmic.
8

The computational studies aim primarily at establishing principles such as rigidity
or planarity that apply to any visual system facing the problem of interpreting
structure from motion. Certain equations may be usc ' in the derivation of such

principles, but it does not follow, of course, that a systein utilizing these principles
would have to solve these equations in the process of interpreting sructure from
motion.

The problem of accuracy in the measurements and computation is an important
one. To be of practical value, the interpretation scheme must be robust: small errors
in the measurement of position and velocity, for example, should not lead to a
complete breakdown of the interpretation scheme. This means that computational
studies should not only explore what is possible under idealized conditions, but
also examine the effects of small perturbations and errors. An example of such an
analysis will be given below.

4.2 The use of positions vs. velocity fields

All of the structure-from-motion schemes examined about used certain measurements
as their "inputs", and recovered the 3-D structure and motion in space as "output".
Different schemes used different inputs; some used the positions (in the image) of
the moving elements at different times, while others used their retinal velocities.

As noted earlier, the difference between the two formulations is not that
velocity-based schemes are continuous and position-based ones discrete. A position-
based computation, for example, can use the continually changing positions,
without necessarily requiring discrete "snapshots", but also without using velocity

measurements.

j , 9



.7.

It is not clear at present which formulation, the position-I)ased or the velocity-Imscd,
is more directly relevant to human motion perception, since the measuremonts
employed by the human visual system are not [illy known. It, may prove valuable,
therefore, to explore in niore detail different schemes that are based on diffiereiit
types of inputs. The comparison of such schemes with the performance of the
human visual system could provide some clues regarding the types of measuremients

* employed by the visual system in the interpretation of structure from motion.

4.9 Parallel and perspective velocity fields

The projection of the external environment available to our eyes is perspective rather
than parallel. What, then, is the relevance of the parallel projection studies? There
are two answers to this question. rhe first is that humans can recover structure
from motion under orthographic projection. The second answer lies in the fact
that under local analysis, perspective and parallel projections are nearly identical.
(Local analysis means here that the surface patch under analysis is restricted to
a small part of the visual field, so that the dimensions of the patch are small
compared to its overall distance from the viewer.) If the interpretation scheme is to
be robust and insensitive to small errors, it must also be capable of coping with the
minor difTerences between the two projections, and either projection can therefore
be assumed. One can, in fact, use the two kinds of projection as a test for stability.
If a given interpretation scheme can operate under perspective projoection but fails
under orthographic projection, it cannot be a stable local interpretation method.

In the next section, I shall argue that (i) the recovery of 3-D structure from the
instantaneous velocity field is impossible under orthographic projection, and (ii) for
perspective projection, the recovery is unstable under local interpretation.

5 The orthographic velocity field.

In this section, we shall derive a complete characterization of the 3-) information
that can be recovered from the instantaneous velocity field under orthographic
projection.

5.1 The depth scaling proposition

Consider two surface patches such as S and S2 in Figure 3. The figure shows a
cross-section of the surfaces from a side view. They are assumed to be rotationally
syrinnetric with respect to rotations around the observer's liram of siglit so that S1,
for example, is part of the surface of a sphere. The observer is assuuend to view
the objects along the Y axis, which is his line of sight, or (tel)th ax is. X is the
observer's horizontal axis, Z the vertical, md the X - Z plne is callhd the ii mage

mlati. The objects are assumed to be fixed at one point, which is taken as the
origin of the coordinate system.
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Figure 3 The ambiguity of the orthographic velocity field. The surface S2 is obtained from S,

via depth-scaling. Any motion of S1 can be "mimicked" by S2 in such a way that their velocity
fields will coincide.

Let o and 02 denote the parallel projections of S1 and S 2, respectively (on the
X - Y plane); P, and P2 will denote the perspective projections of S1 and S2;
O and P, (for i = 1,2) will denote the parallel and perspective velocity fields,
respectively; u(x, z) will denote the projected velocity in the horizontal direction
and v(z, z) in the vertical.

The surface S2 in Figure 3 was obtained from S1 by the following transformation:
if (x, y, z) is a point on S1, then (x, ky, z) is a point of S2 , for a fixed constant k
(k = 5 in Figure 3). Si is assumed to rotate by some angular velocity w1 about the
vertical axis, and S2 rotates about the same axis with angular velocity w2 = w1/k.
This transformation (including the rotations) will be called "depth-scaling", since
the depth coordinate Y is scaled by a constant k.

Since the rotation is about the vertical Z axis, under orthographic projection, all
the points will travel in the image plane parallel to the X axis. The projected
velocity of a point on S1 having spatial coordinates (xi, yl, zi) will be ul = -ylwl.

The corresponding point on S2 (i.e., the point on S2 whose projection coincides
with that of (zl, yl, z1 )) has a projected velocity U2 - -Y2W 2. Since by definition,

Y2 = kyl, w2 = w 1/k, it follows that ul = u 2 for every image point, and therefore
the velocity fields of S and S2 coincide.

In this example, the objects were assumed to rotate about the vertical Z axis, but
2 can, in fact, "mimic" S under arbitrary rotation. This claim can be established

by noting that any rotation in space can be decomposed into two components: one
is a rotation about an axis lying in the frontal X - Z plane, the other is a rotation

.9 11



about the line of sight which is perpendicular to the X - Z plane. We shall call
the first component XZ-rotation and the second Y -rotation. A general rotation
of S1 can be decomposed, therefore, into an XZ-rotation with angular velocity w,
and a Y-rotation with angular velocity 01. Let S 2 rotate by w2 = wi/k about the
same axis in the X - Z plane, and assume 02 = 01. It is not difficult to see that
with this choice of w2, the orthographic velocity fields of S1 and S 2 will coincide.

Unlike the vertical rotation case, where the two objects had a common rotation
axis, in this case (assuming wl p 0, 01 $4 0), the two objects would rotate about
different spatial axes and still have identical velocity fields. We conclude that under
orthographic projection, two objects can differ drastically in their shapes (e.g., in
terms of their surface orientation and curvatures), axes of rotation and rotation
speeds, and yet induce identical velocity fields.

Since the constant k used in the definition of S 2 can be chosen arbitrarily, the velocity
fields admit not only two distinct interpretations, but an infinite family of surfaces
for depth scaling by different factors k. (The definition of depth scaling includes
the appropriate relation between the rotation components, w2 = wi/k, 02 = 01. It
is also assumed that wl p 0.) It can be further shown that this family completely
characterizes the set of confusable objects. We can summarize these claims in the
following proposition:

The Depth Scaling Proposition. If a non-planar surface S1 is a possible

rigid interpretation for a given orthographic velocity field, then S 2 is another
possible interpretation if and only if it is obtained from S1 via depth scaling.

The proof of this proposition is given in Appendix 1. It serves to give a complete
characterization of all possible interpretations of the orthographic velocity field.
Its first implication is that this interpretation is always non-unique. The second
implication is that, although the interpretation is non-unique, properties that are
invariant under depth-scaling can be recovered from the orthographic velocity field.
For example, the depth ratio Yi/yj for two points with image coordinates (x,,zi)

and (x,, zj) can be recovered uniquely from the velocity field; extremal points in y

and inflection points can also be recovered.

5.2 The orthographic velocity field of a planar object

The depth scaling proposition stated above holds for non-planar surfaces. For planar
objects, the ambiguity is doubled: the orthographic velocity field admits exactly
two distinct solutions, each determined up to a depth scaling. In addition, it would
be possible to determine from the velocity field whether or not the inducing object
is planar. These properties of the orthographic velocity fields of planar objects are
established in Appendix 2.

5.8 Unique structure from a "view and a half"

As it turns out, the depth-scaling ambiguity of the solution can be resolved with the
addition of a single view. More specifically, if the projected positions and velocities
of five points in a general configuration (i.e., no four of which are coplanar) are
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given at time ti, and the positions of the same five points are given at a later
time t2 , then the 3-D structure can be recovered uniquely (up to the unavoidable
reflection ambiguity about the image plane). This "view-and-a-half" proposition is
proven in Appendix 3.

In summary, under orthographic projection, the interpretation of the velocity field
is non-unique. For non-planar objects, if S1 is a possible interpretation, then S 2

is another possible interpretation, if and only if, it is related to S1, via depth
scaling. Only properties that are invariant under depth scaling can therefore be
recovered from the orthographic velocity field. For planar objects, there are exactly
two distinct interpretations up to depth scaling. The structure can be recovered
uniquely for as few as five points in a general configuration if a single view is given
in addition to the velocity field. A more detailed analysis, including the planar case,
is given in the appendix.

6 The perspective velocity field

The perspective velocity field is, in a sense, richer in information than the or-
thographic field. While the orthographic field admits infinitely many interpretations,
in the perspective case, the velocity field, even in an arbitrarily small neighborhood,
can have no more than three interpretations. 15 For a sufficiently small patch of
surface, perspective and orthographic projections are not very different, however,
and one may suspect, therefore, that the local interpretation of perspective velocity
fields in unstable. The argument is roughly as follows. Under orthographic projec-
tion, two widely different objects, S1 and S2, can have similar, and even identical
velocity fields, O' and O', respectively. For a sufficiently large viewing distance, the
perspective velocity fields, P and P become similar to O and 2, respectively.
Consequently, P' and P'2 are also closely similar, and therefore, slight errors in the
measured velocity fields can have large effects on the interpreted 3-D shape.

This argument can be made more precise. Let S and S2 in Figure 4 be two surfaces
rotating about the Z axis. As before, the direction of gaze is along the Y axis.
S2 is derived from S in this case by extending the ray from the viewing point to
each point on S so that Y2/Yl = k for a given constant k. The surface S 2 depends
in this case on the viewing point: when the viewing distance increases, the shape
of S 2 in the perspective case approaches the orthographic depth scaling of S1 by
the constant k. (In Figure 4, it was assumed that the ratio of viewing distance to
object size is such that the object occupies one degree of visual angle.) As before,
we will choose w2 = wI/k. Finally, let H denote the distance of the origin Q from
the observer.

The projected velocity of P, (a point on S1 with y 3 0) is (ul, ul). This velocity
will be measured as an angular velocity, i.e., the number of deg/sec a point travels

* in the observer's field of view. The angular velocity of the corresponding point on
52 is (u2,v2). The claim is that when 11 is sufficiently large, the vectors (uluV)
and (u2, v2) become arbitrarily close. That is, as H grows, the ratio between their
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Figure 4 The instability of the local interpretation of perceptive velocity fields. Under local

analysis, small errors in the measured velocity field can induce large errors in the interpreted 3-D
structure. The difference in the velocity fields induced by S, and S2 will be less than 3.2% when

the surface patches occupy one degree of visual angle, and about 6% at twice this size.

magnitudes V/U? + V?/U2 + 2 approaches 1, and their difference in direction,
measured by (vI/ul) - (v2/u 2 ), approaches 0 (assuming y # 0 in the region, except
at the origin).

The proof of this claim is straightforward, and will, therefore, not be detailed. It can
be derived from the expressions given below for the speed ratio and the direction
difference. These expressions follow directly from the definitions. The speed ratio
(squared) is:

2 -5 2] 12 k, + Z2/X] 2~k ( + yl) 4
U2 + V2 [(H + kyl)y -+ z2k /2 2/k
ul + V1 [(H + yj)Y1 + ± zx11 (H + kyl)4

where

H + kyj H + kyi
Xr2 -"X' Z2 -- Zl

H + Y H + Y

The difference in direction is:

V2 v1  z2z2/k zIzI

U2  - (H + kyl)yj + x/k (!+ yl)yl + X2
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It can be seen from these expressions that for any point with Y1 -?/ 0, the speed
ratio approaches 1 and the difference in direction approaches 0 as H grows. Under
certain conditions (which will not be elaborated), this will also happen uniformly
within a region.

As a result, it is possible to construct drastically different objects whose velocity
fields within a region are almost identical. That is, the differences in speed and
direction at any given point within the region can be made arbitrarily small. As
explained in the analysis of the orthographic case, this ambiguity is not restricted
to rotation about the vertical axis, but can arise for arbitrary rotations as well.

The surfaces in Figure 4 illustrate that this problem can be quite severe. When
the viewing distance is such that the surfaces in Figure 4a occupy one degree of
visual angle, the differences in their perspective velocity fields within the entire one
degree patch will not exceed 3.2%. At half the viewing distance, the maximum
error about 6%.

Concluding Remarks

The comparisons discussed in the last sections can be combined with psychological
experiments to gain further insight into the possible use of instantaneous velocity
fields in the recovery of structure from motion by the human visual system. One
can test, for example, whether shape parameters, such as surface orientation and
curvature, can be recovered by the visual system for objects subtending one or
two degrees of visual angle. Even a moderate success in this task would suggest
that either our visual system measures velocities with high precision, or that the
interpretation under these conditions does not rely on the instantaneous velocity
field. The first of these alternatives does not seem attractive. Computational studies
have indicated that the measurement of the velocity field is, in general, a difficult
task, 2 1 ,22 and it is probably unrealistic to expect these measurements to reach
the level of precision required for the interpretation task. The ability to interpret
correctly the 3-D structure of small objects can therefore provide evidence against
the use of the instantaneous velocity field in this task. One may expect instead to
find in the visual system, the capacity to integrate information over time periods
that allow sufficient excursion of the moving object, rather than to base the
interpretation on. instantaneous velocity measurements.

Acknowledgements: I thank E. Hildreth and E. Grimson for their help and
ILI comments. This work (with the exception of the "view and a half" proposition)

appears in Human & Machine Vision, Beck & Rosenfeld, eds., Academic Press, in
press.
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APPENDICES

Appendix 1: The depth scaling proposition

This appendix uses the same notion as Section 4 above. As before, S, and S2 are
two rotating rigid surfaces. The rotation of S, can be decomposed into a component
with angular velocity wl (assumed to be non-zero) about an axis in the frontal
X - Z plane (XZ-rotation), and a second component (Y-rotation) with angular
velocity 01 about the line of sight Y. The corresponding components for S2 are w2

and 02. S2 will be called a depth scaling of S1 if:

0 For every point (X, y, z) on S1 , (x, ky, z) is a point on S2 for some constant
k 340.

0 * The rotations w, and w2 are around the same axis and w2 = wI/k.

" 01 02.

The depth scaling proposition

* If a non-planar surface, S1, is a possible rigid interpretation for a given
orthographic velocity field, then S 2 is another possible interpretation if, and
only if, it is obtained from S1 via depth scaling.

Proof: We have seen in a previous sections that if S2 is obtained from Si via depth
scaling, then their orthographic velocity fields coincide. The converse statement
that remains to be shown is that if S1 and S2 have identical velocity fields, then
they are related via depth scaling.

This property clearly holds in the vertical rotation case where S1 and S2 both rotate
about the Z axis. If the angular velocities of SI and S2 about the vertical axis are
W, and W2 respectively, then the projected velocities at point (x, y) in the image are
-wlYl and -W2Y2 respectively. This implies that for the velocity fields to coincide,
the depth ratios Y2/Y1 at any given point in the image must equal w1/w2.

To show that the proposition holds under general rotation, we shall establish the
folloWing claim: if two rotating (non-planar) objects, Sl and S2, have the same
orthographic velocity field, then 01 - 02 (where 0 denotes, as before, the rotation
component about the line of sight).

17

L mo" - --_ _ _.



Let 01 be the Y-rotation of the first object. By rotating the velocity field induced
by S1 by -01 about the line of sight, the Y-rotation component of S is cancelled,
and the only component that remains is the XZ-rotation about some axis in the
X - Z plane. The resulting velocity field will have the property that all the velocity
vectors will now be parallel to each other. We shall next show that -01 is the only
Y-rotation which, when added to the velocity fields, results in a parallel velocity
field. The implication will be that, given a velocity field, the Y-rotation component
is uniquely determined, and hence, 01 - 02.

Without loss of generality, we can assume that in the resulting parallel velocity
field, all the projected velocity vectors are in the direction of the X axis. This
means that the image velocity component in the Z direction v(x, z) = 0 at every
image point (X, z), and the velocity field (u(x, z), v(x, z)) can therefore be described
as (u(x, z), 0). Let us now add to this field a Y-rotation with some angular speed,
0. The combined velocity field will now be (u(x, z) - zO, x). This will again be a
parallel velocity field only if either

u(x, z) - zO = 0 (Al)

or

= c (A2)U('z) - zO

for some constant c. In either case, it can be readily verified that the velocity field
u(x, z) must have been induced by a planar surface. In the second case, for example,
u(x, z) = (Ox/c) + Oz and the original rotation of S1 was assumed to be about the
Z axis. For rotation about the Z axis with angular velocity w, the velocity field is
given by

u(x, z) - y(x, z). (A3)

It follows that

0 0
y = -z,(A4)

WC WJ

which is the equation of a plane.

We conclude that for a non-planar object, starting from a parallel velocity field, a
Y-rotation by any amount will.destroy the parallelism of the field. It follows that,
given the velocity field of S, (which is also the velocity field of S2), there is one,
and only one, Y-rotation, by -01, that will create a parallel velocity field. This
rotation is defined by the velocity field itself, independent of tile inducing object,
and hence 01 = 02.

We can now add to both S1 and S2 a rotation component -01 that will cancel
rotation about the line of sight. Their velocity fields will still concide, but now both
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Figure 5 The velocity field of a planar surface. Line a is perpendicular to the field direction,

and the field is nullified along b. This field has two different interpretations. In one, a is the
rotation axis and b is the tilt line. In the second interpretation, roles are switched: a is the tile

line, and b is the projection of the rotation axis.

objects rotate about a common axis in the image plane. Within loss of generality,
this axis can be labeled the Z axis, and the general rotation can thereby be reduced
to the case of vertical rotation.

Appendix 2: The velocity fields of planar surfaces

For a rotating planar surface, when the velocity field is parallel to the X axis, it
will have the following form:

u(X, z) ax + lz(5).

That is, the field depends linearly on x and z. This velocity field is illustrated in

Figure 5. Two special lines are marked in this figure: line a (coinciding in this case
with the z axis), which is perpendicular to the field direction, and line b (the dotted
line in Figure 5) along which the field is nullified.
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In describing the 3-D interpretation of this field, we shall make use of the following
definition: a plane that is not parallel to X - Z must intersect it along a straight
line, which will be called the "tilt line" of the plane. We then have the following
proposition:

* There are exactly two planar interpretations of the velocity field in Figure 5.
In one interpretation, a is the axis of rotation, and b is the tilt line. In the
second interpretation, the roles are switched: a is the tilt line, and b is the
projection of the rotation axis (the axis itself lies on the planar surface). Each
of these interpretations is determined as before up to depth scaling.

The proof of this proposition is rather straightforward, and will therefore be sketched
briefly. Let (fl, Of, fl,) be the angular velocity vector of the rotating object. The
velocity of a point (X, y, z) is given by the vector product (f0, fty, f12) X (z, y, z).
The velocity field is required to have the form: u(x, z) --ax + #z, v(x, z) == 0.
Therefore,

flyz - fay -- ax + #zfly - Zx f 0. (A6)

One solution to these equations arises when fl = 0. This implies that f2-- 0 (if y
is not identically 0) and y = -(ax + /3y)/f2_. This solution corresponds to a plane
whose tilt line is b, rotating about the vertical axis.

If l, 3 0, then Q,, 34 0 and y = (flV/f2x)z. The surface must therefore be a plane
with its tilt line coinciding with the Z axis.

In conclusion, the following statements summarize the analysis of the information
content of the orthographic velocity field, for both planar and non-planar objects.
Given the orthographic velocity field:

0 It is possible to determine whether the inducing object is planar.

If it is non-planar, then the interpretation is determined exactly up to depth
scaling.

If it is planar, then there are two distinct solutions up to depth scaling.

Appendix 3: Unique 3-D structure from a "view and a half'

As we have seen, a single view of the orthographic velocity field is insufficient to
recover the 3-D structure of inducing objects. In this section, we shall see that with
additional, "half-a-view", the 3-D structure of an object containing at least five
points in a general configuration is uniquely determined.

Five points in space are arranged in a general configuration if no four of them are
coplanar. It is assumed here that two views of the five points in motion are given.

The first view gives the projected positions (xi, zi), and the velocities (ui, v),
i 0 ... , 4 of the five points at time t. The second view gives the position of the
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points (xi, z1) at some later time t'. We shall assume that between t and t', the
rotation of the object was less than 180 degrees.

The "view- and- a-half" proposition:

0 Given two orthographic views of five points in general configuration, the first
view specifying the position and velocities of the points, the second their
position only, the 3-D structure of the five points is uniquely determined.

Proof: We have seen that the 3-D structure of non-planar objects can be recovered
up to depth-scaling from the velocity field alone. The same result holds when the
velocity field is known for five isolated points, rather than within a continuous
region. What remains to be shown, therefore, is that the depth-scaling ambiguity
can be removed with the addition of a single view at a later time t'.

The proof is divided into two parts. In the first part, the object is assumed to rotate
about the vertical Z axis. The second part extends the results to general motion.

Rotation about the vertical axis

Without loss of generality, it can be assumed that the object is fixed at one point
(X 0 , YO, Zo), which will serve as the coordinate system's origin. For a rotation about
the vertical Z axis, the Z coordinates of all the points remain unaltered, and the
x coordinates are transformed according to:

=x cosa + yiksina i 1.. .4 (A7)

where a is the unknown angle of rotation about the vertical axis between viewer V1

and V2. Both xi and yi are already known while k is the still unknown depth-scaling
factor. We thus obtain four linear equations (for 1 < i < 4) in two unknowns, cosa
and ksina. Two independent equations are sufficient for a unique solution. Two
equations of the form

x - xicosa + yiksina

* x xjcosa + yjksina

will not be independent if xiyj = xjyi. We shall, therefore, fail to obtain a pair of
independent equations only if xiyj = xjyi for every 1 < i, j <_ 4. This condition
implies that all of the points are lying on a common plane passing through the
origin in contradiction to the general configuration assumption. A unique solution

* " for cosa, ksina is therefore guaranteed, and this solves a and k up to a sig. 'which
is the inherent ambiguity with respect to reflection about the image p. 'iie).
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Figure 6 (a) The lines P, - PI and P2 - P2 are parallel to the X axis. (b) The points P1 and

P in the figure have been rotated together about the origin by an angle a. Their new positions

are P"' and P' respectively. The lines P - P" and P2 - P" are parallel to each other.

Uniqueness under general motion

As has been noted in earlier sections, general rotation can be decomposed into
two components: a rotation about some axis (the XZ axis) lying in the image
plane, following by a rotation (Y-rotation) about the line of sight. To extend the
uniqueness result to general motion, we shall prove next that for five points in a
general configuration, the Y-rotation and the XZ axis can be recovered uniquely
from the two views. Consequently, it is always possible to "undo" the Y-rotation
and re-label the XZ axis as the new Z axis, thereby reducing the motion between
the two views to rotation about the vertical axis. The remainder of the proof is
divided into two lemmas.

* Lemma 1: Let P1 , P2, P and P be four points in the X - Y image plane, such
that the lines P, - P, and P2 - P' are both parallel to the X axis (figure 6a). Let
P' and P2 now rotate together in the plane about the origin by an angle a, and
denote by P", P", the new position of P', P , respectively. Question: is there an
angle a such that the new lines P - P" and P2 - P" will again be parallel to each
other? (See fig 6.)

Claim: Under the following two conditions

(i) (P', P2) is not a reflection of (PI, P2) about the Z axis;

* (ii) at least one of the lines P1 - P2, P - P2 does not pass through the origin;
there exists exactly one such angle a.
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Proof: Let the coordinates of P be (zi, zj) of P' be (x~z') and of Pz (x 'z ').

2" 'os z sina

"= Xzsina + z'cosa (A8)

Following the rotation, the lines (P1 - P") and (P2 - P") are parallel, therefore
their slopes coincide:

Z1 - _ Z2 - Z 2
Z1-X 1 22-X 2 (Ag)Xl - X1 X2 - X2(A9

(There is also the possibility that x, = x" and x2 - x" and therefore the
denominators vanish. We shall see, however, that in this case, there is still a unique
solution for a.)

Substituting for x?" and z?' from (A8) yields the following. (Note that z, -- z',
Z2 = 2-)

z1 - x'lsina - zlcosa Z2 - xsina - z2cosa

1= (AIO)
Xl - x1cosa + zlsina X2 - x2cosa + z2sina

which reduces to the form

asina + bcosa = b (All)

where

a = X1X 2 -XX 2

b = X 1 Z2 + XZ2 - ZX2 2- zl4.

If a and b are not both zero, (All) has exactly one solution, given by:

2abin a = --
a2 + b2

a2

Cosa a2 + b2 '  
(A12)

If a - 0 and b 0, then (All) provides two equations in x, and x2 . If these
equations are independent, then their solution is x1 = x1, x 2 -2, in violation
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of condition (i) of the lemma. The equations are dependent when Xl/12 z =

Xl/x' which violates assumption (ii).

Finally, if there is an angle a which makes the denominators in (A) equal to zero,
this angle is still a solution, and the only solution to the equation is (All).

Let us consider next two frames of an object with five points (in general configuration)
rotating about the Z axis. Let P and P' for i = 0..., 4 denote the first and second
frames, respectively, without loss of generality P, = P'o. As in lemma 1, the lines
p- - p, i = 1..., 4 are all parallel to the X axis. The points P' are now rotated
about the origin, and their new positions are denoted by P',.

Lemma 2:

For every 0 < a < 27r, the lines Pi - P" will no longer be all parallel to one
another.

Proof: Suppose that an angle a exists such that P - P ', i = 1.. .4 are all parallel
to one another. Consider the triplet of points (P'o, P',P',) (where P0 = P0 is the
origin, and i = 2, 3, 4). From lemma 1, such a triplet has a single angle ai that
would make the line P 1 - P parallel to Pi - P". To make all the lines Pi - f ',
i = 2.. .4 parallel simultaneously, a 2 = a3 = 4 = a. From (All),

a i  l-cosa (A13)
bi - sina

where c is constant. (sina $ 0 implies that bi 0 0, unless both ai and bi equal
zero.) We therefore obtain that if bi 3 0,

a, zlxi = c. (A14)

bi xi + x'zi - zi - zlx' C

We now make use of the fact that the points (zx, y') are obtained from (xiyi) via
rotation by some angle 0 $ 0 about the Z axis, namely

x= xicosO - yisinO. (A15)

Equation (A14) now becomes

xl(zicosO - yisinO) - xi =

cxlzi + cx'zi - czlx, - czi(xcosO - yisinO). (A16)

Equation (A16) holds for i = 2,3, 4, including the points (if any) for which
a, = b, = 0, in which case it is satisfied for every value of c. Note that x', y', z', do
not appear in (A16), which therefore reduces to the form:
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Ax + By 1 + Cz= 0 (A17)

where

A = x1cosO - x' + cz1 + cztcosO

B -x 1 sinO - czlsinO

C = - cX1I.

Equation (A17) is an equation of a plane passing through the origin. All of the
points (xi, yi, zi) for i = 2, 3, 4 must obey (A17), and are, therefore, coplanar, in
contradition to the general configuration assumption. It can be assumed that A,
B and C are not all zero. Examine, for instance, the coefficient B, which depends
only on the "reference point" (xi, zi). If B = 0, we will choose a different point as
the reference point (X, zr). B cannot vanish for all points, since such a condition
would imply

B = -xisinO - czisinO = 0

for i - 1...4, which is again, an equation of a plane.

Conclusion: Given two orthographic projections of an object in a general
configuration, the XZ axis and the Y-rotation are uniquely determined. If a
denotes the Y-rotation between the two frames, then rotating the second frame

by -a would make all the lines (xi, zi) - (x , z ) parallel to one another and the
XY axis would then be perpendicular to these lines. Lemma 2 established that this
angle a is unique, and hence, the Y-rotation and XY axis are determined uniquely
by just two frames.
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